Mineral resources and sustainability

John Thompson
PetraScience Consultants

Earth – a special place

- Living dynamic planet with an environment that supports life
- Earth processes concentrated resources – available for human use

Earth processes – metal concentration

Ocean floor vents – copper, zinc, gold, silver

Hot springs – gold, silver

Context

- ▶ Increasing demand
 - ► Human needs
 - ► Energy transition
- Constraints
 - Societal
 - ► Environmental climate
- Responsible metal production
- ▶ Reduce reuse recycle

Human transition

- ▶ 1 to 3 billion people need
 - access to electricity promotes education
 - ▶ heat without use of wood, charcoal, coal, dung
 - sanitation and clean water
- Requires energy and metals

Technology and the low carbon economy

- ► Technology
- ► Clean energy
- Transportation
- ▶ Complexity

Technology and the low carbon economy

- ▶ Technology
- Clean energy
- ▶ Transportation
- Complexity

World Bank 2017: amount of metal required to deliver clean energy and efficient transportation (electric vehicles) to restrict climate change to 2°C or 4°C by 2050

Metal	% increase by 2050
Aluminum	207
Copper	174
Nickel	139
Lithium	1060
Cobalt	1060

What are the options

- Reduce demand/increase efficiency
 - ▶ Societal change, better products, substitution
- Find and develop new resources
 - ▶ At surface, below surface and at depth
- Increase/improve production at existing mines
- Change mining and develop new sources
 - New approaches
 - ▶ Natural resources seafloor, space?
- Reuse and recycle circular economy

Chuquicamata – the mine dilemma

- MMH Chuquicamata Radomiro Tomic zone
 - ► Annual production: ~3-4% of global mined Cu
 - ▶ Too deep not economic
- Chuquicamata underground by 2021
 - ▶ 140,000 tpd
 - Technological and societal/cultural challenges

Can we align mining and sustainability?

Supply – mines

- New discoveries
- ► Mine improvements
- New approaches
- New sources

New discoveries

- ▶ People
 - ▶ Traditional exploration
 - ▶ New tools and techniques
 - ▶ Data

Data generation

- ▶ Technology
- ▶ Drones to drills
 - ▶ More cheaper, faster drill holes = more discoveries

Data to knowledge

- ▶ Massive amounts of field, survey, and laboratory data
- Data integration and interrogation
 - ▶ Patterns, vectors, targets and conceptual ideas
 - Artificial intelligence (AI) and machine learning (ML)
- New and modified deposit models
 - ▶ Better understanding of complex ore systems

Kişladağ – alteration data

Spectral data – raw SWIR mineral assemblages

Eldorado Gold

Kişladağ – alteration mineralogy

Mineral distribution: aiSIRIS* Spectral Contribution ('SC') data

Machine learning spectral recognition software – library of >1M spectra

Mining: ongoing improvements

- Digital transformation
 - ▶ Automation
 - Grade engineering and sorting
 - ▶ Integrated operations
 - ▶ Transparency
- New approaches
 - In-pit crushing and conveying
 - ▶ Bulk underground mining
 - ▶ Mine-to-metal
- Waste reduction and management

Digital transformation

- Automation
 - ▶ Improved safety
 - ▶ More efficient
 - ► Lower energy

Grade engineering – sorting

Variability and real-time sensor-based data

- → Separate metal-rich rocks from waste
 - Less rock processed, reduced tailings
 - → Lower energy

MineSense

Mapping variability – data to knowledge

Data collection \Rightarrow Interpretation \Rightarrow Integration \Rightarrow Understanding

2015 Samarco, Brazil

Waste – Tailings

- ▶ Frequent disasters unacceptable
- New management approaches
- ▶ Less waste

2018 Brumandinho, Brazil

New approaches and solutions

- ▶ In-situ leaching
- Deposit clusters
- ▶ Land use mapping
- ▶ Recycling

In situ recovery

Dissolve the metals in place – underground

- Already used for potash and uranium
- Advantages
 - ▶ No mining no waste
 - ▶ Low cost
- ▶ Challenge
 - Water management

Deposit clusters

Escondida

>1.27 Mt Cu/yr (~5% of global production)

Escondida cluster

Cluster: 4 separate deposits, 3 mines, 4 major owners (2 joint ventures)

NuevaUnión project, Chile

- ▶ Two deposits two owners
 - ▶ Newmont: El Morro Cu-Au
 - ▶ Teck: Relincho Cu-Mo
- ▶ 2015 Agreement one operation
- Single mill, tailings facility, port, transmission line, water and concentrate pipeline and access road
- Minimizes impact

8 de febrero de 2015. 23 de abril de 2015.

Facilitated by landscape-scale data

Global Agenda

Blueprints for a Greener Footprint

Sustainable Development at a Landscape Scale

- ▶ Landscape scale data
 - ▶ 3D geology
 - ▶ Surface and biosphere
 - Culture and heritage
 - ▶ Human activity

Plan and design development

- ► Maximize "value" for all
- Minimize cumulative impact

Waste Management in a Circular Economy

LINEAR ECONOMY

Recycling record

- ▶ Lead
 - 99% of lead acid batteries recycled developed world;>50% globally
- ▶ Aluminum
 - ▶ 30-85% total recycling globally
- ▶ Steel
 - ▶ 40% of global market from recycling
- Copper
 - ▶ Recycled scrap (old and new): ~30% of global market
- ▶ Zinc
 - ▶ Limited to batteries and some galvanized steel
- ► E-waste: precious and specialty metals
 - ▶ Limited phones, computers, flat screens, solar panels....

Conclusions

- Demand for metals will continue
 - ▶ Watch for "peak demand"
- ▶ Short-medium term solutions "mine of the future"
 - ▶ New discoveries of quality deposits
 - Responsible mines: clean, efficient reduced, managed and reused waste
 - ▶ Transparent and collaborative partnerships
- ▶ Integration with products and consumers
- Driving towards the circular economy

